Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
J Virol ; 98(3): e0153623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315014

RESUMO

African swine fever (ASF) is a highly contagious viral disease that affects domestic and wild pigs. The causative agent of ASF is African swine fever virus (ASFV), a large double-stranded DNA virus with a complex virion structure. Among the various proteins encoded by ASFV, A137R is a crucial structural protein associated with its virulence. However, the structure and molecular mechanisms underlying the functions of A137R remain largely unknown. In this study, we present the structure of A137R determined by cryogenic electron microscopy single-particle reconstruction, which reveals that A137R self-oligomerizes to form a dodecahedron-shaped cage composed of 60 polymers. The dodecahedron is literally equivalent to a T = 1 icosahedron where the icosahedral vertexes are located in the center of each dodecahedral facet. Within each facet, five A137R protomers are arranged in a head-to-tail orientation with a long N-terminal helix forming the edge through which adjacent facets stitch together to form the dodecahedral cage. Combining structural analysis and biochemical evidence, we demonstrate that the N-terminal domain of A137R is crucial and sufficient for mediating the assembly of the dodecahedron. These findings imply the role of A137R cage as a core component in the icosahedral ASFV virion and suggest a promising molecular scaffold for nanotechnology applications. IMPORTANCE: African swine fever (ASF) is a lethal viral disease of pigs caused by African swine fever virus (ASFV). No commercial vaccines and antiviral treatments are available for the prevention and control of the disease. A137R is a structural protein of ASFV that is associated with its virulence. The discovery of the dodecahedron-shaped cage structure of A137R in this study is of great importance in understanding ASFV pathogenicity. This finding sheds light on the molecular mechanisms underlying the functions of A137R. Furthermore, the dodecahedral cage formed by A137R shows promise as a molecular scaffold for nanoparticle vectors. Overall, this study provides valuable insights into the structure and function of A137R, contributing to our understanding of ASFV and potentially opening up new avenues for the development of vaccines or treatments for ASF.


Assuntos
Vírus da Febre Suína Africana , Suínos , Proteínas Estruturais Virais , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/química , Vírus da Febre Suína Africana/crescimento & desenvolvimento , Vírus da Febre Suína Africana/patogenicidade , Vírus da Febre Suína Africana/ultraestrutura , Microscopia Crioeletrônica , Relação Estrutura-Atividade , Suínos/virologia , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo , Proteínas Estruturais Virais/ultraestrutura , Vírion/química , Vírion/metabolismo , Vírion/ultraestrutura , Virulência
2.
Influenza Other Respir Viruses ; 17(11): e13212, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37964991

RESUMO

Background: A viral infection can modify the risk to subsequent viral infections via cross-protective immunity, increased immunopathology, or disease-driven behavioral change. There is limited understanding of virus-virus interactions due to lack of long-term population-level data. Methods: Our study leverages passive surveillance data of 10 human acute respiratory viruses from Beijing, Chongqing, Guangzhou, and Shanghai collected during 2009 to 2019: influenza A and B viruses; respiratory syncytial virus A and B; human parainfluenza virus (HPIV), adenovirus, metapneumovirus (HMPV), coronavirus, bocavirus (HBoV), and rhinovirus (HRV). We used a multivariate Bayesian hierarchical model to evaluate correlations in monthly prevalence of test-positive samples between virus pairs, adjusting for potential confounders. Results: Of 101,643 lab-tested patients, 33,650 tested positive for any acute respiratory virus, and 4,113 were co-infected with multiple viruses. After adjusting for intrinsic seasonality, long-term trends and multiple comparisons, Bayesian multivariate modeling found positive correlations for HPIV/HRV in all cities and for HBoV/HRV and HBoV/HMPV in three cities. Models restricted to children further revealed statistically significant associations for another ten pairs in three of the four cities. In contrast, no consistent correlation across cities was found among adults. Most virus-virus interactions exhibited substantial spatial heterogeneity. Conclusions: There was strong evidence for interactions among common respiratory viruses in highly populated urban settings. Consistent positive interactions across multiple cities were observed in viruses known to typically infect children. Future intervention programs such as development of combination vaccines may consider spatially consistent virus-virus interactions for more effective control.


Assuntos
Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Viroses , Vírus , Criança , Adulto , Humanos , Lactente , Pequim/epidemiologia , Infecções Respiratórias/epidemiologia , Teorema de Bayes , China/epidemiologia , Vírus/genética , Viroses/epidemiologia
3.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4004-4028, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37877387

RESUMO

T cells play central roles in anti-tumor immune responses. Immune checkpoint therapy, which is based on modulation of T cell reactivity, has achieved breakthrough in clinical treatment of multiple tumors. Moreover, adoptive T cell therapy, which includes mainly genetically engineered T cells, has shown substantial treatment efficacy in hematoma. Immune therapy has tremendously changed the scenario of clinical tumor treatment and become critical strategies for treating multiple tumors. T cell receptor (TCR) is the fundamental molecule responsible for the specificity of T cell recognition. TCRs could recognize peptides, which are derived from intracellular or extracellular tumor antigens, presented by major histocompatibility complex (MHC) and are therefore highly sensitive to low antigen level. Thereby, TCRs are broadly recognized as promising molecules for the development of anti-tumor drugs. The approval of the first TCR drug in 2022 has initiated a new era for TCR-based therapeutics and since then, multiple TCR drugs have shown substantial treatment efficacy in multiple tumors. This review summarizes the progress of TCR-based immune therapeutic strategies, including T cell receptor-engineered T cell (TCR-T), TCR-based protein drugs, and other cell therapies based on TCR signaling, providing useful information for future design of immune therapeutics based on TCR.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia , Antígenos de Neoplasias
4.
Nat Commun ; 14(1): 6389, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828002

RESUMO

KRAS mutations are broadly recognized as promising targets for tumor therapy. T cell receptors (TCRs) can specifically recognize KRAS mutant neoantigens presented by human lymphocyte antigen (HLA) and mediate T cell responses to eliminate tumor cells. In the present study, we identify two TCRs specific for the 9-mer KRAS-G12V mutant neoantigen in the context of HLA-A*11:01. The TCR-T cells are constructed and display cytokine secretion and cytotoxicity upon co-culturing with varied tumor cells expressing the KRAS-G12V mutation. Moreover, 1-2C TCR-T cells show anti-tumor activity in preclinical models in female mice. The 9-mer KRAS-G12V mutant peptide exhibits a distinct conformation from the 9-mer wildtype peptide and its 10-mer counterparts. Specific recognition of the G12V mutant by TCR depends both on distinct conformation from wildtype peptide and on direct interaction with residues from TCRs. Our study reveals the mechanisms of presentation and TCR recognition of KRAS-G12V mutant peptide and describes TCRs with therapeutic potency for tumor immunotherapy.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Feminino , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Antígenos de Neoplasias , Receptores de Antígenos de Linfócitos T/metabolismo , Peptídeos/química , Terapia Baseada em Transplante de Células e Tecidos
5.
BMC Med ; 21(1): 233, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400857

RESUMO

BACKGROUND: Several COVID-19 vaccines are in widespread use in China. Few data exist on comparative immunogenicity of different COVID-19 vaccines given as booster doses. We aimed to assess neutralizing antibody levels raised by injectable and inhaled aerosolized recombinant adenovirus type 5 (Ad5)-vectored COVID-19 vaccine as a heterologous booster after an inactivated COVID-19 vaccine two-dose primary series. METHODS: Using an open-label prospective cohort design, we recruited 136 individuals who had received inactivated vaccine primary series followed by either injectable or inhaled Ad5-vectored vaccine and measured neutralizing antibody titers against ancestral SARS-CoV-2 virus and Omicron BA.1 and BA.5 variants. We also measured neutralizing antibody levels in convalescent sera from 39 patients who recovered from Omicron BA.2 infection. RESULTS: Six months after primary series vaccination, neutralizing immunity against ancestral SARS-CoV-2 was low and neutralizing immunity against Omicron (B.1.1.529) was lower. Boosting with Ad5-vectored vaccines induced a high immune response against ancestral SARS-CoV-2. Neutralizing responses against Omicron BA.5 were ≥ 80% lower than against ancestral SARS-CoV-2 in sera from prime-boost subjects and in convalescent sera from survivors of Omicron BA.2 infection. Inhaled aerosolized Ad5-vectored vaccine was associated with greater neutralizing titers than injectable Ad5-vectored vaccine against ancestral and Omicron SARS-CoV-2 variants. CONCLUSIONS: These findings support the current strategy of heterologous boosting with injectable or inhaled Ad5-vectored SARS-CoV-2 vaccination of individuals primed with inactivated COVID-19 vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Estudos Prospectivos , SARS-CoV-2
6.
Lancet Microbe ; 4(5): e330-e339, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001538

RESUMO

BACKGROUND: Severe community-acquired pneumonia (SCAP) is associated with a substantial number of hospitalisations and deaths worldwide. Infection or co-infection patterns, along with their age dependence and clinical effects are poorly understood. We aimed to explore the causal and epidemiological characteristics by age, to better describe patterns of community-acquired pneumonia (CAP) and their association with severe disease. METHODS: National surveillance of CAP was conducted through a network of hospitals in 30 provinces in China from 2009-20 inclusive. Patients with CAP were included if they had evidence of acute respiratory tract, had evidence of pneumonia by chest radiography, diagnosis of pneumonia within 24 h of hospital admission, and resided in the study catchment area. For the enrolled patients with CAP, nasopharyngeal and oral swabs were taken and tested for eight viral pathogens; and blood, urine, or expectorated sputum was tested for six bacterial pathogens. Clinical outcomes, including SCAP, were investigated with respect to age and patterns of infections or co-infections by performing binary logistic regression and multivariate analysis. FINDINGS: Between January, 2009, and December, 2020, 18 807 patients with CAP (3771 [20·05%] with SCAP) were enrolled. For both children (aged ≤5 years) and older adults (aged >60 years), a higher overall rate of viral and bacterial infections, as well as viral-bacterial co-infections were seen in patients with SCAP than in patients with non-SCAP. For adults (aged 18-60 years), however, only a higher rate of bacterial-bacterial co-infection was observed. The most frequent pathogens associated with SCAP were respiratory syncytial virus (RSV; 21·30%) and Streptococcus pneumoniae (12·61%) among children, and influenza virus (10·94%) and Pseudomonas aeruginosa (15·37%) among older adults. Positive rates of detection of most of the tested pathogens decreased during 2020 compared with the 2009-19 period, except for RSV, P aeruginosa, and Klebsiella pneumoniae. Multivariate analyses showed SCAP was significantly associated with infection with human adenovirus, human rhinovirus, K pneumoniae, or co-infection of RSV and Haemophilus influenzae or RSV and Staphylococcus aureus in children and adolescents (aged <18 years), and significantly associated with infection with P aeruginosa, K pneumoniae, or S pneumoniae, or co-infection with P aeruginosa and K pneumoniae in adults (aged ≥18 years). INTERPRETATION: Both prevalence and infection pattern of respiratory pathogens differed between patients with SCAP and patients with non-SCAP in an age-dependent manner. These findings suggest potential advantages to age-related strategies for vaccine schedules, as well as clinical diagnosis, treatment, and therapy. FUNDING: China Mega-Project on Infectious Disease Prevention and The National Natural Science Funds of China. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Coinfecção , Infecções Comunitárias Adquiridas , Pneumonia , Vírus Sincicial Respiratório Humano , Viroses , Criança , Adolescente , Humanos , Adulto , Idoso , Coinfecção/epidemiologia , Coinfecção/complicações , Coinfecção/microbiologia , Pneumonia/diagnóstico , Pneumonia/epidemiologia , Pneumonia/etiologia , Streptococcus pneumoniae , Viroses/complicações , Klebsiella pneumoniae , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/diagnóstico , Infecções Comunitárias Adquiridas/microbiologia
7.
J Immunol ; 210(5): 668-680, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695776

RESUMO

The chicken MHC is known to confer decisive resistance or susceptibility to various economically important pathogens, including the iconic oncogenic herpesvirus that causes Marek's disease (MD). Only one classical class I gene, BF2, is expressed at a high level in chickens, so it was relatively easy to discern a hierarchy from well-expressed thermostable fastidious specialist alleles to promiscuous generalist alleles that are less stable and expressed less on the cell surface. The class I molecule BF2*1901 is better expressed and more thermostable than the closely related BF2*1501, but the peptide motif was not simpler as expected. In this study, we confirm for newly developed chicken lines that the chicken MHC haplotype B15 confers resistance to MD compared with B19. Using gas phase sequencing and immunopeptidomics, we find that BF2*1901 binds a greater variety of amino acids in some anchor positions than does BF2*1501. However, by x-ray crystallography, we find that the peptide-binding groove of BF2*1901 is narrower and shallower. Although the self-peptides that bound to BF2*1901 may appear more various than those of BF2*1501, the structures show that the wider and deeper peptide-binding groove of BF2*1501 allows stronger binding and thus more peptides overall, correlating with the expected hierarchies for expression level, thermostability, and MD resistance. Our study provides a reasonable explanation for greater promiscuity for BF2*1501 compared with BF2*1901, corresponding to the difference in resistance to MD.


Assuntos
Doença de Marek , Animais , Alelos , Aminoácidos , Membrana Celular , Galinhas , Doença de Marek/genética , Antígenos de Histocompatibilidade Classe I/imunologia
8.
MAbs ; 15(1): 2153409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36511654

RESUMO

Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is a critical inhibitory checkpoint molecule, and monoclonal antibodies (mAbs) targeting CTLA-4 that restore anti-tumor T cell immunity have achieved clinical success. Here, we report a humanized IgG1 mAb, namely JS007, with high binding affinity to CTLA-4. JS007 shows superior binding affinity and T-cell activating efficiency over ipilimumab. Moreover, it demonstrates substantial in vivo tumor suppression efficacy at low doses. The crystal structure of JS007/CTLA-4 complex (PDB: 8HIT) shows JS007 adopts a heavy-chain-dominant binding mode, and mainly contacts the BC loop, DE loop and FG loop of CTLA-4. Notably, two Tyr residues (VH-Y100 and VL-Y32) from the complementarity-determining region loops insert into the two cavities formed by the residues from the loops of CTLA-4, which may contribute to the stabilization of the binding. Comparative analysis with other anti-CTLA-4 mAbs indicates that the double "wedge-into-hole" binding mode is unique for JS007 and may be responsible for the high-affinity binding to CTLA-4. These findings have provided an important molecular understanding of the high-affinity CTLA-4 blockade mAbs and shed light on future development of agents targeting CTLA-4.


Assuntos
Neoplasias , Humanos , Ipilimumab/uso terapêutico , Ipilimumab/farmacologia , Neoplasias/terapia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Bloqueadores , Regiões Determinantes de Complementaridade
9.
Cells ; 11(24)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36552780

RESUMO

Foot-and-mouth disease virus (FMDV) poses a significant threat to the livestock industry. Through their recognition of the conserved epitopes presented by the swine leukocyte antigen (SLA), T cells play a pivotal role in the antiviral immunity of pigs. Herein, based on the peptide binding motif of SLA-2*HB01, from an original SLA-2 allele, a series of functional T-cell epitopes derived from the dominant antigen VP1 of FMDV with high binding capacity to SLA-2 were identified. Two parallel peptides, Hu64 and As64, from the O and Asia I serotypes, respectively, were both crystallized with SLA-2*HB01. Compared to SLA-1 and SLA-3, the SLA-2 structures showed the flexibility of residues in the P4, P6, and P8 positions and in their potential interface with TCR. Notably, the peptides Hu64 and As64 adopted quite similar overall conformation when bound to SLA-2*HB01. Hu64 has two different conformations, a more stable 'chair' conformation and an unstable 'boat' conformation observed in the two molecules of one asymmetric unit, whereas only a single 'chair' conformation was observed for As64. Both Hu64 and As64 could induce similar dominant T-cell activities. Our interdisciplinary study establishes a basis for the in-depth interpretation of the peptide presentation of SLA-I, which can be used toward the development of universal vaccines.


Assuntos
Vírus da Febre Aftosa , Suínos , Animais , Sorogrupo , Epitopos de Linfócito T , Peptídeos
10.
Viruses ; 14(11)2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36366430

RESUMO

Zika virus (ZIKV)-specific T cells are activated by different peptides derived from virus structural and nonstructural proteins, and contributed to the viral clearance or protective immunity. Herein, we have depicted the profile of CD8+ and CD4+ T cell immunogenicity of ZIKV proteins in C57BL/6 (H-2b) and BALB/c (H-2d) mice, and found that featured cellular immunity antigens were variant among different murine alleles. In H-2b mice, the proteins E, NS2, NS3 and NS5 are recognized as immunodominant antigens by CD8+ T cells, while NS4 is dominantly recognized by CD4+ T cells. In contrast, in H-2d mice, NS1 and NS4 are the dominant CD8+ T cell antigen and NS4 as the dominant CD4+ T cell antigen, respectively. Among the synthesized 364 overlapping polypeptides spanning the whole proteome of ZIKV, we mapped 91 and 39 polypeptides which can induce ZIKV-specific T cell responses in H-2b and H-2d mice, respectively. Through the identification of CD8+ T cell epitopes, we found that immunodominant regions E294-302 and NS42351-2360 are hotspots epitopes with a distinct immunodominance hierarchy present in H-2b and H-2d mice, respectively. Our data characterized an overall landscape of the immunogenic spectrum of the ZIKV polyprotein, and provide useful insight into the vaccine development.


Assuntos
Vacinas , Infecção por Zika virus , Zika virus , Animais , Camundongos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Epitopos Imunodominantes , Camundongos Endogâmicos C57BL , Infecção por Zika virus/prevenção & controle , Proteínas não Estruturais Virais/imunologia , Proteínas do Envelope Viral/imunologia
11.
J Immunol ; 209(9): 1652-1661, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36130828

RESUMO

Cross-recognized public TCRs against HIV epitopes have been proposed to be important for the control of AIDS disease progression and HIV variants. The overlapping Nef138-8 and Nef138-10 peptides from the HIV Nef protein are HLA-A24-restricted immunodominant T cell epitopes, and an HIV mutant strain with a Y139F substitution in Nef protein can result in immune escape and is widespread in Japan. Here, we identified a pair of public TCRs specific to the HLA-A24-restricted Nef-138-8 epitope using PBMCs from White and Japanese patients, respectively, namely TD08 and H25-11. The gene use of the variable domain for TD08 and H25-11 is TRAV8-3, TRAJ10 for the α-chain and TRBV7-9, TRBD1*01, TRBJ2-5 for the ß-chain. Both TCRs can recognize wild-type and Y2F-mutated Nef138-8 epitopes. We further determined three complex structures, including TD08/HLA-A24-Nef138-8, H25-11/HLA-A24-Nef138-8, and TD08/HLA-A24-Nef138-8 (2F). Then, we revealed the molecular basis of the public TCR binding to the peptide HLA, which mostly relies on the interaction between the TCR and HLA and can tolerate the mutation in the Nef138-8 peptide. These findings promote the molecular understanding of T cell immunity against HIV epitopes and provide an important basis for the engineering of TCRs to develop T cell-based immunotherapy against HIV infection.


Assuntos
Infecções por HIV , HIV-1 , Epitopos de Linfócito T , Antígeno HLA-A24 , Humanos , Epitopos Imunodominantes , Peptídeos/análise , Receptores de Antígenos de Linfócitos T/análise , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T Citotóxicos , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
12.
PLoS Med ; 19(5): e1003953, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617368

RESUMO

BACKGROUND: Heterologous boost vaccination has been proposed as an option to elicit stronger and broader, or longer-lasting immunity. We assessed the safety and immunogenicity of heterologous immunization with a recombinant adenovirus type-5-vectored Coronavirus Disease 2019 (COVID-19) vaccine (Convidecia, hereafter referred to as CV) and a protein-subunit-based COVID-19 vaccine (ZF2001, hereafter referred to as ZF). METHODS AND FINDINGS: We conducted a randomized, observer-blinded, placebo-controlled trial, in which healthy adults aged 18 years or older, who have received 1 dose of Convidecia, with no history of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, were recruited in Jiangsu, China. Sixty participants were randomly assigned (2:1) to receive either 1 dose of ZF2001 or placebo control (trivalent inactivated influenza vaccine (TIV)) administered at 28 days after priming, and received the third injection with ZF2001 at 5 months, referred to as CV/ZF/ZF (D0-D28-M5) and CV/ZF (D0-M5) regimen, respectively. Sixty participants were randomly assigned (2:1) to receive either 1 dose of ZF2001 or TIV administered at 56 days after priming, and received the third injection with ZF2001 at 6 months, referred to as CV/ZF/ZF (D0-D56-M6) and CV/ZF (D0-M6) regimen, respectively. Participants and investigators were masked to the vaccine received but not to the boosting interval. Primary endpoints were the geometric mean titer (GMT) of neutralizing antibodies against wild-type SARS-CoV-2 and 7-day solicited adverse reactions. The primary analysis was done in the intention-to-treat population. Between April 7, 2021 and May 6, 2021, 120 eligible participants were randomly assigned to receive ZF2001/ZF2001 (n = 40) or TIV/ZF2001 (n = 20) 28 days and 5 months post priming, and receive ZF2001/ZF2001 (n = 40) or TIV/ZF2001 (n = 20) 56 days and 6 months post priming. Of them, 7 participants did not receive the third injection with ZF2001. A total of 26 participants (21.7%) reported solicited adverse reactions within 7 days post boost vaccinations, and all the reported adverse reactions were mild, with 13 (32.5%) in CV/ZF/ZF (D0-D28-M5) regimen, 7 (35.0%) in CV/ZF (D0- M5) regimen, 4 (10.0%) in CV/ZF/ZF (D0-D56-M6) regimen, and 2 (10.0%) in CV/ZF (D0-M6) regimen, respectively. At 14 days post first boost, GMTs of neutralizing antibodies in recipients receiving ZF2001 at 28 days and 56 days post priming were 18.7 (95% CI 13.7 to 25.5) and 25.9 (17.0 to 39.3), respectively, with geometric mean ratios of 2.0 (1.2 to 3.5) and 3.4 (1.8 to 6.4) compared to TIV. GMTs at 14 days after second boost of neutralizing antibodies increased to 107.2 (73.7 to 155.8) in CV/ZF/ZF (D0-D28-M5) regimen and 141.2 (83.4 to 238.8) in CV/ZF/ZF (D0-D56-M6) regimen. Two-dose schedules of CV/ZF (D0-M5) and CV/ZF (D0-M6) induced antibody levels comparable with that elicited by 3-dose schedules, with GMTs of 90.5 (45.6, 179.8) and 94.1 (44.0, 200.9), respectively. Study limitations include the absence of vaccine effectiveness in a real-world setting and current lack of immune persistence data. CONCLUSIONS: Heterologous boosting with ZF2001 following primary vaccination with Convidecia is more immunogenic than a single dose of Convidecia and is not associated with safety concerns. These results support flexibility in cooperating viral vectored and recombinant protein vaccines. TRIAL REGISTRATION: Study on Heterologous Prime-boost of Recombinant COVID-19 Vaccine (Ad5 Vector) and RBD-based Protein Subunit Vaccine; ClinicalTrial.gov NCT04833101.


Assuntos
COVID-19 , Vacinas contra Influenza , Adenoviridae/genética , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Método Duplo-Cego , Humanos , Imunogenicidade da Vacina , SARS-CoV-2 , Vacinação , Vacinas Sintéticas/efeitos adversos
13.
Proc Natl Acad Sci U S A ; 119(19): e2201288119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35507870

RESUMO

African swine fever virus (ASFV) is the causative agent of African swine fever, a highly contagious and usually fatal disease in pigs. The pathogenesis of ASFV infection has not been clearly elucidated. Here, we used single-cell RNA-sequencing technology to survey the transcriptomic landscape of ASFV-infected primary porcine alveolar macrophages. The temporal dynamic analysis of viral genes revealed increased expression of viral transmembrane genes. Molecular characteristics in the ASFV-exposed cells exhibited the activation of antiviral signaling pathways with increased expression levels of interferon-stimulated genes and inflammatory- and cytokine-related genes. By comparing infected cells with unexposed cells, we showed that the unfolded protein response (UPR) pathway was activated in low viral load cells, while the expression level of UPR-related genes in high viral load cells was less than that in unexposed cells. Cells infected with various viral loads showed signature transcriptomic changes at the median progression of infection. Within the infected cells, differential expression analysis and coregulated virus­host analysis both demonstrated that ASFV promoted metabolic pathways but inhibited interferon and UPR signaling, implying the regulation pathway of viral replication in host cells. Furthermore, our results revealed that the cell apoptosis pathway was activated upon ASFV infection. Mechanistically, the production of tumor necrosis factor alpha (TNF-α) induced by ASFV infection is necessary for cell apoptosis, highlighting the importance of TNF-α in ASFV pathogenesis. Collectively, the data provide insights into the comprehensive host responses and complex virus­host interactions during ASFV infection, which may instruct future research on antiviral strategies.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vírus da Febre Suína Africana/genética , Animais , Antivirais/metabolismo , Perfilação da Expressão Gênica , Macrófagos/metabolismo , Suínos , Replicação Viral/fisiologia
14.
Vaccine ; 40(20): 2869-2874, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35400561

RESUMO

BACKGROUND: In partial response to the coronavirus disease 2019 (COVID-19) pandemic, countries around the world are conducting large-scale vaccination campaigns. Real-world estimates of vaccine effectiveness (VE) against the B.1.617.2 (Delta) variant are still limited. An outbreak in Ruili city of Chinaprovided an opportunity to evaluate VE against the Delta variant of two types of COVID-19 vaccines in use in China and globally - inactivated (CoronaVac and BBIBP-CorV) and adenovirus type 5 vectored (Convidecia) vaccines. METHODS: We estimated VE using a retrospective cohort study two months after the Ruili vaccination campaign (median: 63 days). Close contacts of infected people (Chinese nationality, 18 years and above) were included to assess VE against symptomatic Covid-19, COVID-19 pneumonia, and severe COVID-19. We calculated the relative risks (RR) of the outcomes for unvaccinated compared with fully vaccinated individuals. We used logistic regression analyses to estimate adjusted VEs, controlling for gender and age group (18-59 years and 60 years and over).We compared unvaccinated and fully vaccinated individuals on duration of RT-PCR positivity and Ct value. FINDINGS: There were 686 close contacts eligible for VE estimates. Adjusted VE ofad5-vectored vaccine was 61.5% (95% CI, 9.5-83.6) against symptomatic COVID-19, 67.9% (95%CI: 1.7-89.9) against pneumonia, and 100% (95%CI: 36.6-100) against severe/critical illness. For the two inactivated vaccines, combined VE was 74.6% (95% CI, 36.0-90.0) against symptomatic COVID-19, 76.7% (95% CI: 19.3-93.3) against pneumonia, and 100% (95% CI: 47.6-100) against severe/critical COVID-19. There were no statistically significant differences in VE between twoinactivated vaccines for symptomatic COVID-19 and for pneumonia, nor were there statistically significant differences between inactivated and ad5-vectored VE in any of the three outcomes. The median durations of RT-PCR positivity were 17 days for fifteen people vaccinated with an inactivated vaccine, 18 days for forty-four people vaccinated with the Ad5 vectored vaccine, and 26 days for eleven unvaccinated individuals. INTERPRETATION: These results provide reassuring evidence that the three vaccines are effective at preventing Delta-variant COVID-19 in short term following vaccination campaign, and are most effective at preventing more serious illness. The findings of reduced duration of RT-PCR positivity and length of hospital stay associated with full vaccination suggests potential saving of health-care system resources.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adenoviridae/genética , Adolescente , Adulto , COVID-19/epidemiologia , COVID-19/prevenção & controle , China/epidemiologia , Surtos de Doenças/prevenção & controle , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2 , Adulto Jovem
15.
Front Immunol ; 13: 826045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309324

RESUMO

Immune checkpoint therapy (ICT) with a monoclonal antibody (MAb) against programmed cell death protein 1 (PD-1) is a powerful clinical treatment for tumors. Cemiplimab is a human IgG4 antibody approved in 2018 and is the first MAb proven to be effective for locally advanced basal cell carcinoma. Here, we report the crystal structure of cemiplimab bound to PD-1 and the effects of PD-1 N-glycosylation on the interactions with cemiplimab. The structure of the cemiplimab/PD-1 complex shows that cemiplimab mainly binds to PD-1 with its heavy chain, whereas the light chain serves as the predominant region to compete with the binding of PD-L1 to PD-1. The interaction network of cemiplimab to PD-1 resembles that of camrelizumab (another PD-1-binding MAb), and the N58 glycan on the BC loop of PD-1 may be involved in the interaction with cemiplimab. The binding affinity of cemiplimab with PD-1 was substantially decreased with N58-glycan-deficient PD-1, whereas the PD-1/PD-L1 blocking efficiency of cemiplimab was attenuated upon binding to the N58-glycosylation-deficient PD-1. These results indicate that both the binding and blocking efficacy of cemiplimab require the N58 glycosylation of PD-1. Taken together, these findings expand our understanding of the significance of PD-1 glycosylation in the interaction with cemiplimab.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais Humanizados , Antígeno B7-H1/metabolismo , Glicosilação , Humanos , Receptor de Morte Celular Programada 1/metabolismo
16.
iScience ; 25(4): 104013, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35310951

RESUMO

Phosphopeptides presented by major histocompatibility complex (MHC) class I have been regarded as a pivotal type of cancer neoantigens that are recognized by T cells. The structural basis of single-phosphorylated peptide presentation has been well studied. Diphosphorylation with one interval between two sites is one of the prevalent forms of multisite-phosphorylated peptides. Herein, we determined the molecular basis of presentation of two P4/P6 double pS-containing peptides by HLA-B27 and compared them with unmodified and single-phosphorylated peptide complexes. These data clarified not only the HLA allele-specific presentation of phosphopeptides by MHC class I molecules but also the cooperativity of peptide conformation within P4 and P6 phosphorylation sites. The phosphorylation of P6 site can influence the binding mode of P4 phosphorylated site to HLA-B27. And we found the diphospho-dependent attenuated effect of peptide binding affinity. This study provides insights into the MHC presentation features of diphosphopeptides, which is different from monophosphopeptides.

17.
J Med Virol ; 94(8): 3863-3875, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35355288

RESUMO

With deep sequencing of virus genomes within the hosts, intrahost single nucleotide variations (iSNVs) have been used for analyses of virus genome variation and evolution, which is indicated to correlate with viral pathogenesis and disease severity. Little is known about the features of iSNVs among DNA viruses. We performed the epidemiological and laboratory investigation of one outbreak of adenovirus. The whole genomes of viruses in both original oral swabs and cell-cultured virus isolates were deeply sequenced. We identified 737 iSNVs in the viral genomes sequenced from original samples and 46 viral iSNVs in cell-cultured isolates, with 33 iSNVs shared by original samples and cultured isolates. Meanwhile, we found these 33 iSNVs were shared by different patients, among which, three hot spot areas 6367-6401, 9213-9247, and 10 584-10 606 within the functional genes of the adenovirus genome were found. Notably, the substitution rates of iSNVs were closely correlated with the clinical and immune indicators of the patients. Especially a positive correlation to neutrophils was found, indicating a predictable biomarker of iSNV dynamics. Our findings demonstrated the neutrophil-correlated dynamic evolution features of the iSNVs within adenoviruses, which indicates a virus-host interaction during human infection of a DNA virus.


Assuntos
Adenoviridae , Neutrófilos , Adenoviridae/genética , Genoma Viral , Humanos , Filogenia
18.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046043

RESUMO

Receptor usage defines cell tropism and contributes to cell entry and infection. Coxsackievirus B (CVB) engages coxsackievirus and adenovirus receptor (CAR), and selectively utilizes the decay-accelerating factor (DAF; CD55) to infect cells. However, the differential receptor usage mechanism for CVB remains elusive. This study identified VP3-234 residues (234Q/N/V/D/E) as critical population selection determinants during CVB3 virus evolution, contributing to diverse binding affinities to CD55. Cryoelectron microscopy (cryo-EM) structures of CD55-binding/nonbinding isolates and their complexes with CD55 or CAR were obtained under both neutral and acidic conditions, and the molecular mechanism of VP3-234 residues determining CD55 affinity/specificity for naturally occurring CVB3 strains was elucidated. Structural and biochemical studies in vitro revealed the dynamic entry process of CVB3 and the function of the uncoating receptor CAR with different pH preferences. This work provides detailed insight into the molecular mechanism of CVB infection and contributes to an in-depth understanding of enterovirus attachment receptor usage.


Assuntos
Antígenos CD55/metabolismo , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/fisiologia , Interações Hospedeiro-Patógeno , Receptores Virais/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Enterovirus Humano B/ultraestrutura , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/química , Relação Estrutura-Atividade , Ligação Viral
19.
J Nat Prod ; 85(2): 327-336, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35084181

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 5 million deaths worldwide to date. Due to the limited therapeutic options so far available, target-based virtual screening with LC/MS support was applied to identify the novel and high-content compounds 1-4 with inhibitory effects on SARS-CoV-2 in Vero E6 cells from the plant Dryopteris wallichiana. These compounds were also evaluated against SARS-CoV-2 in Calu-3 cells and showed unambiguous inhibitory activity. The inhibition assay of targets showed that compounds 3 and 4 mainly inhibited SARS-CoV-2 3CLpro, with effective Kd values. Through docking and molecular dynamics modeling, the binding site is described, providing a comprehensive understanding of 3CLpro and interactions for 3, including hydrogen bonds, hydrophobic bonds, and the spatial occupation of the B ring. Compounds 3 and 4 represent new, potential lead compounds for the development of anti-SARS-CoV-2 drugs. This study has led to the development of a target-based virtual screening method for exploring the potency of natural products and for identifying natural bioactive compounds for possible COVID-19 treatment.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Testes de Sensibilidade Microbiana/métodos , Floroglucinol/farmacologia , SARS-CoV-2/efeitos dos fármacos , Terpenos/farmacologia , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Cristalografia por Raios X , Sistemas de Liberação de Medicamentos , Dryopteris/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Simulação de Acoplamento Molecular , Estrutura Molecular , Realidade Virtual
20.
Clin Infect Dis ; 75(1): e1054-e1062, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34788811

RESUMO

BACKGROUND: To combat the coronavirus disease 2019 (COVID-19) pandemic, nonpharmaceutical interventions (NPIs) were implemented worldwide, which impacted a broad spectrum of acute respiratory infections (ARIs). METHODS: Etiologically diagnostic data from 142 559 cases with ARIs, who were tested for 8 viral pathogens (influenza virus [IFV], respiratory syncytial virus [RSV], human parainfluenza virus [HPIV], human adenovirus [HAdV], human metapneumovirus [HMPV], human coronavirus [HCoV], human bocavirus [HBoV], and human rhinovirus [HRV]) between 2012 and 2021, were analyzed to assess the changes in respiratory infections in China during the first COVID-19 pandemic year compared with pre-pandemic years. RESULTS: Test-positive rates of all respiratory viruses decreased during 2020, compared to the average levels during 2012-2019, with changes ranging from -17.2% for RSV to -87.6% for IFV. Sharp decreases mostly occurred between February and August when massive NPIs remained active, although HRV rebounded to the historical level during the summer. While IFV and HMPV were consistently suppressed year-round, RSV, HPIV, HCoV, HRV, and HBoV resurged and went beyond historical levels during September 2020-January 2021, after NPIs were largely relaxed and schools reopened. Resurgence was more prominent among children <18 years and in northern China. These observations remain valid after accounting for seasonality and long-term trend of each virus. CONCLUSIONS: Activities of respiratory viral infections were reduced substantially in the early phases of the COVID-19 pandemic, and massive NPIs were likely the main driver. Lifting of NPIs can lead to resurgence of viral infections, particularly in children.


Assuntos
COVID-19 , Bocavirus Humano , Metapneumovirus , Orthomyxoviridae , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Viroses , Vírus , COVID-19/epidemiologia , Criança , Humanos , Pandemias , Vírus da Parainfluenza 1 Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA